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1. INTRODUCTION 
 
 Recent work on automated spectral classification algorithms has sought to distinguish ever-more similar 
materials. From modest beginnings separating shade, soil, rock and vegetation (Soha et al., 1976) to ambitious 
attempts to discriminate mineral types (Kruse et al., 1993; Boardman, 1993; Clark and Swayze, 1995) and specific 
plant species (Kokaly et al., 1997), the trend seems to be toward using increasingly subtle spectral differences to 
perform the classification. Rule-based expert systems exploiting the underlying physics of spectroscopy such as the 
USGS Tetracorder system (Clark et al., 2001) are now taking advantage of the high spectral resolution and 
dimensionality of current imaging spectrometer designs (cf. Eastwood et al., 2000) to discriminate spectrally similar 
materials. The current paper details recent efforts to discriminate three minerals having absorptions centered at the 
same wavelength, with encouraging results. 
 
2.  THE CALCITE-EPIDOTE-CHLORITE PROBLEM 
 
2.1 Relevance 
 
 One of the applications of remote hyperspectral analysis is the examination of mineralogy in mining 
districts. The current study was undertaken as part of the Animas River Watershed study (Nimick and von Guerard, 
1998) of the U.S. Geological Survey Abandoned Mine Lands (AML) Project. A key goal of this project is the 
determination of levels of acidic mine drainage in the watershed, which includes several hydrothermal alteration 
zones (Bove et al., 2000) associated with the Silverton Caldera in the San Juan Mountains of southwestern Colorado. 
Weathering of pyrite (FeS2) results in an assemblage of minerals, which includes goethite, hematite and jarosite 
(Bigham et al., 1996), as well as production of sulfuric acid (H2SO4) which then contaminates runoff, usually 
acquiring a load of dissolved metals along the way (Mast et al., 2000) and eventually enters the river. In the Silverton 
Caldera, large areas of naturally-occurring exposed hydrothermal alteration zones (ibid.) contribute significant 
quantities of acid to the watershed, complicating efforts to ascertain the level of anthropogenic impact. 
 
 The Silverton Caldera overlies preexisting sedimentary rock containing large quantities of calcite as 
limestone (Lipman et al., 1973). Where the acidic waters combine with waters that have passed through these 
limestone beds, the buffering action of the carbonates reduces the acidity of the water. This has strong effects on the 
water quality and concentrations of dissolved metals (Church et al., 2000). Calcite also occurs within the igneous 
rock, at much lower concentrations, as a result of propylitic alteration. In order to accurately assess and model effects 
of pyrite weathering from natural and artificial sources, land managers and aqueous geochemists need to determine 
the occurrence and distribution of calcite in the watershed. 
 
 Previous attempts to classify and map calcite through hyperspectral imagery  (Dalton et al., 1998, 2000) 
have been held up by the spectral similarity of calcite to both epidote and chlorite, which also result from propylitic 
alteration. In such alteration zones, these three minerals are typically found together as a fine-grained mixture that 
appears homogeneous at  greater than centimeter scales, but may be readily distinguished by field geologists upon 
examination with a hand-lens or microscope. Chlorite may have weak buffering capabilities (DesBorough et al., 
1998), though these are an order of magnitude weaker than those of calcite. A determination of stream buffering 
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capacity in the watershed therefore requires knowledge of the distribution and abundance of all three minerals. Thus, 
solving the Calcite-Epidote-Chlorite problem became a primary interest for the authors of this study. 
 
2.2 Spectral Comparisons 
 
 Near-infrared spectra of calcite, epidote and chlorite in the 2.0- to 2.5-µm (micron) range are shown in 
Figure 1. The diagnostic infrared absorption band of calcite (CaCO3) is centered at 2.34 µm, as are those of epidote 
(Ca2(Fe3+,Al)3(SiO4)3(OH)) and chlorite ((Mg,Fe2+)5Al(Si3Al)O10(OH)8). Although chlorite is actually a broad term 
referring to a large family of minerals (Klein and Hurlbut, 1993), in this study we refer to a specific chlorite, 
ripidolite, which is a ferroan clinochlore (Fleischer and Mandarino, 1995) and is the primary type found in the study 
area. The 2.3 µm chlorite band complex may vary its shape, intensity and position in response to changes in 
composition (Hunt and Salisbury, 1970; King and Clark, 
1989), and so care is recommended in applying the results 
of this study to other locations. The secondary band at 2.26 
µm in the chlorite spectrum, for example, may change in 
strength relative to the primary band at 2.34 µm. However, 
for pure samples of the chlorite used in this study, the band 
positions and relative strengths remained constant with 
respect to grain size, as they did for the epidote. There is 
no corresponding band in the calcite spectrum, although a 
small shoulder is seen in the primary absorption band at 
2.3 µm. Calcite does feature a weak absorption at 2.15 µm, 
which is not seen in the other two minerals. Finally, an 
absorption occurs at 2.0 µm, which is strongest in the 
calcite spectrum and weakest in epidote. 
 
 This last absorption is not useful for terrestrial 
remote sensing studies because it conflicts with 
atmospheric water vapor. The 2.1- µm calcite absorption, 
in turn, cannot be used because it lies very close to a clay 
mineral feature centered at 2.2 µm. Since all of the 
remotely-sensed spectra in this study (and most AVIRIS 
studies) are of mixtures of a variety of materials, the 
discrimination method must be highly robust. While the 
2.26-µm absorption seen in the chlorite and epidote spectra 
is sufficient to separate them from calcite when comparing 
pure samples in the laboratory, a further complication 
arises in the field. This is illustrated by the fourth spectrum 
in Figure 1, that of a rock sample acquired during 
preliminary field-checking of the classified AVIRIS data. 
Laboratory analysis shows sample SJ98-74D to be a fine-
grained mixture of 44.58% epidote, 10.98% chlorite, and 
6.73% calcite in a propylitic matrix containing other, 
infrared-inactive minerals. Normalized for weight, the spectral contributions of the three spectrally active minerals 
come to approximately 70% epidote, 20% chlorite, and 10% calcite. Since it is a fine-grained mixture, its spectrum is 
not a simple linear combination of its pure components.  The infrared spectrum of this ground-truth sample has the 
same band center as calcite, despite its low calcite content. The overall band shape, width and position correlate 
strongly with all three of the pure endmember spectra. Given current signal-to-noise ratios, combined with other 
potential sources of error, a classification algorithm based only on the pure endmember information might easily 
misidentify the sample. Divulging the relative abundance of calcite, and thus acid-buffering potential, throughout the 
AVIRIS scenes is not therefore a matter of comparing single-channel intensity levels, ratios of band depths, nor even 
continuum-removed, area-weighted correlation coefficients of pure endmembers.  Two main approaches may lend 
themselves to the solution of this problem: the first is the mathematically elegant, computationally expensive 

 
Figure 1. Infrared spectra of calcite, chlorite and 
epidote, along with spectrum of field sample SJ98-
74D, a rock containing all three in a fine-grained 
matrix. The intimate mixture produces a spectrum 
exhibiting features of all three components. 



quantitative unmixing approach based on optical constants (Hapke, 1993; Mustard and Sunshine, 1999); and the 
second is the less elegant empirical approach of comparing spectra of an assortment of fine-grained laboratory 
mixtures. Given the present limitations of modern microprocessors, this study utilizes the latter approach. 
 
3. DETAILS OF EMPIRICAL APPROACH 
 
3.1 Tetracorder Algorithm 
 
 The USGS Tetracorder Expert System (Clark et al. 2001, Clark and Swayze 1995, Clark et al. 1990) has 
been described fully elsewhere; such a description is beyond the scope of this paper and the reader is advised to 
consult the references given. The heart of the method is the comparison of continuum-removed absorption bands of 
spectra kept in a reference library, to those of an observed spectrum. The Tetracorder Algorithm can be trained to 
compare sets of diagnostic bands for a given material, and even exclude materials from consideration based on the 
presence or absence of certain bands . Each band under consideration is normalized against its continuum and then 
scaled by a multiplicative constant so that its depth matches that of the corresponding reference band. Least-squares 
correlation coefficients are calculated and weighted according to the area under the curve and optional user-defined 
weights. Sets of bands for specific materials are compared based on a prescribed set of rules. An identification is 
issued based on application of these rules to the calculated values. For imaging spectroscopy applications, an image 
is generated for each material under consideration, with the intensity of each pixel corresponding to the product of 
correlation coefficient and absorption band depth; this roughly scales with abundance (Clark et al., 1990). The 
images of relevant materials are then assembled into a classified image.  
 
3.2 Laboratory and field samples 
 
 For this study, the reference library (Tetracorder v3.6a2) of over 400 minerals, vegetation species, snow 
cover types and manmade materials was augmented with laboratory spectra of mixtures of calcite, epidote and 
chlorite. Figure 2 is a ternary diagram indicating the pure endmembers, mixture proportions, and a number of rock 
samples acquired in the field and used for testing. A set of field samples collected under a different portion of the 
watershed study was analyzed for composition using point counts of mineral grains to determine relative weight 
percents of calcite, epidote and chlorite. Due to expense, only two samples collected from known regions previously 
misidentified as calcite but actually containing little to no calcite could be analyzed in this manner. Most of the 
samples cluster in one region of the diagram, indicating a tendency toward such mixtures. Whether this is caused by 
selection effects during field sampling or, as is quite likely, accurately reflects the composition of the study region, is 
of little consequence to this study, because in any case a robust discrimination algorithm requires a consistent spread 
of compositions throughout the ternary diagram.  For this reason as well as the presence of other mineral phases in 
the samples, the use of laboratory mixtures was deemed to give a more accurate reference set. Pure samples of each 
mineral were ground and wet-sieved using methanol. The 75–150-µm size fraction was found to closely match the 
band depths of pure inclusions of calcite, epidote and chlorite in the field samples. This fact conveniently eliminated 
sources of error due to differences in grain size between minerals in the mixtures. A set of powdered mixtures was 
prepared from the pure endmembers, in ratios allowing each of the three minerals commensurate representation in 
relation to the other two, as either major, equal, or minor proportions. These proportions are indicated on the ternary 
diagram by the letters B through N, and given numerically in Table I. Sample F (80% epidote, 10% each of calcite 
and chlorite) was omitted because the strong epidote signal rapidly overwhelms the other two minerals as epidote 
concentration increases. This is borne out by examination of continuum-removed spectra of mixture CEC-G and 
samples SJ98-74D and IDB6597. For realistic instrument noise levels, these mixtures will inevitably be classified as 
high in epidote and low in calcite. 
 
 Although it would seem that the 2.26 µm band in the spectrum of sample SJ98-74D could be used to rule 
out a pure calcite identification, in practice the quality of remotely sensed spectra are presently too noisy for this 
band to be reliable in automated applications. If all spectra in the scene were of similar quality to the laboratory data 
shown above, the solution would be trivial. However, due to their differing shapes, the quality of a least-squares 
match between SJ98-74D and each of the three endmembers is roughly the same for each, with typical noise levels 
sufficient to skew the results in favor of the wrong endmember.  Furthermore, this study aims to determine the 



distribution of calcite in mixtures as well. With the full suite of mixtures B through N listed in Table I, such a 
misidentification becomes much less likely. 

 
 

Table I. Numeric values of proportions of calcite, epidote and chlorite used in mixtures. 

Sample ID % Calcite % Epidote % Chlorite 
Calcite   (GDS-304) 100   
Epidote  (GDS-301)  100  
Chlorite (GDS-307)   100 
CEC-B  (GDS-308) 10 10 80 
CEC-C  (GDS-309) 80 10 10 
CEC-D  (GDS-310) 67 33  
CEC-E  (GDS-311) 33 67  
CEC-G  (GDS-312) 20 60 20 
CEC-H  (GDS-313) 20 20 60 
CEC-I    (GDS-314) 60 20 20 
CEC-J   (GDS-315) 67  33 
CEC-K  (GDS-316) 33  67 
CEC-L   (GDS-317)  33 67 
CEC-M  (GDS-318)  67 33 
CEC-N   (GDS-319) 34 33 33 

 

 
Figure 2. Ternary diagram indicating proportions of calcite, epidote and chlorite in 
each of the laboratory mixtures and several rock samples collected in the field. 
Vertices are 100% endmember; each line denotes a ten percent change in 
concentration. 



 All laboratory spectra were acquired using an Analytical Spectral Devices ASD-6015-7 Field Spectrometer 
with a quartz halogen light source and Spectralon reference standard.  The spectral sampling of this instrument is 2 
nm while the resolution is 11 nm (Goetz et al., 1998). Wavelength calibration was performed using praseodymium-
doped Corning Glass along with mylar plastic sheeting as transmission standards. The spectrometer was programmed 
to average 60 measurements, each having a one second integration time, together per spectrum; 25 such spectra were 
averaged to produce each reference spectrum, for a total integration time of 1800 seconds apiece.  All spectra were 
corrected to absolute reflectance. 
 
 The reference spectra for the three endmembers 
and the twelve mixtures are shown in Figure 3. The 
depth of the primary band at 2.34 µm scales nonlinearly 
with composition; the resultant spectra are most sensitive 
to epidote. Note that the 2.26-µm secondary band is 
evident in all of the mixture spectra, including those (C, 
D, and K) dominated by calcite. The effects of small 
amounts of calcite on the overall band shape are more 
subtle, yet with 21 separate channels in the AVIRIS 
spectra of this band complex, the least-squares 
correlation coefficients differ sufficiently for the 
Tetracorder algorithm to distinguish between them. 
 
3.3 Tetracorder Processing 
 
 Each of the mixture spectra were added to the 
USGS Denver Spectroscopy Laboratory Tetracorder 
3.6a2 reference library. The default continuum-removal 
approach was to fit a straight line to the reflectance 
continuum using the two continuum points on either side 
of the absorption band (Clark and Roush, 1984) and 
divide the spectrum by this fitted continuum line. In 
order to compare continuum-removed features, tie points 
were established at the edges of the primary band (at 
2.18 and 2.42 µm) and also, separately, for the secondary 
band (2.21 and 2.28 µm) for each of the mixtures. The tie 
points for continuum removal were slightly different for 
each of the pure endmembers, leading to a better 
continuum-removed correlation coefficient for the pure 
cases. 
 
 The algorithm was tested first using the laboratory mixtures as the “observed” test spectra.  All mixtures 
were properly categorized. The 2.15-µm calcite feature was not used in either the testing or analysis phases. The 
method was then tested on the field samples. There were problems classifying certain of the field samples due to the 
presence of a fourth spectrally active component, sericite, in several specimens. Sericite is a fine-grained form of 
muscovite which has a strong diagnostic feature at 2.2 µm and two weaker features at 2.35 and 2.45 µm which 
overlap the 2.3-µm wings of calcite, epidote and chlorite, complicating their identification. This is addressed in 
section 4.3. The two specimens collected during AVIRIS field-checking  (SJ98-74D and SJ98-48) had previously 
been identified as calcite but were correctly identified as mixtures using the improved reference library.  These 
samples contained no sericite. Extracted pixels from AVIRIS scenes corresponding to calcite-epidote-chlorite 
mixtures were the used as test spectra, and correctly identified as mixtures dominated in turn by each of the three. 
Pure samples of the endmembers, and library specimens of other epidote, calcite and chlorite samples were also 
correctly identified with the improved reference spectra. The new approach also correctly identified limestones. 
 

 
Figure 3. The 2.3-µm feature complex of calcite, 
epidote, chlorite and the twelve mixtures used to train 
the Tetracorder algorithm. 



 The next step was application to the AVIRIS Animas Watershed flightlines. These two flight lines were 
acquired on June 18, 1996 at 9:30 AM and cover the region from Durango, Colorado to the headwaters of the 
Animas River at Animas Forks, Colorado. The study area is bounded by national forest on the east and west sides, 
and includes the town of Silverton and all of the Silverton Caldera. The full dataset and its analysis are described 
elsewhere (Dalton et al., 2000, 2001); this paper is concerned specifically with the calcite-epidote-chlorite results, 
which are discussed below. 
 
4. Results 
 
4.1 Regional Context 
 
 The USGS Tetracorder Algorithm was able to successfully utilize the updated reference library to 
distinguish between the calcite, epidote and chlorite endmembers. Most importantly, nearly pure calcites such as 
limestone were easily differentiated from mixtures of calcite, epidote and chlorite. While AVIRIS pixels were 
separated into bins corresponding to each of the mixtures, it must be recognized that such fine division is in fact 
splitting hairs, due to inherent noise and the contributions of other materials in the scene. 
 
 The final images produced by the algorithm were grouped together into images reflecting the surface 
composition in a more general fashion. Referring to the ternary diagram of Figure 2, it is clear that many possible 
compositions would fall into the category of mixture CEC-N (equal parts calcite, epidote and chlorite) and many 
possible mixtures would fall into category CEC-D (mostly calcite, with epidote but no chlorite.) The georeferenced, 
orthorectified image in Figure 4 reflects an intuitive grouping of these materials. The color key shows each 
endmember having a certain primary color (yellow for calcite, blue for epidote, red for chlorite) and the mixtures 
represented by secondary colors. Thus, yellow-green represents a mixture of predominantly calcite but also  
containing epidote, similar to the region around sample mixture CEC-D in Figure 2; dark green is primarily calcite 
but contains both epidote and chlorite, as with mixtures CEC-I and CEC-C and the region surrounding them; blue-
green is epidote with some calcite, as with CEC-E; and so forth. 
 
 Examining Figure 4, the regional context of the study becomes clearer. The town of Silverton is situated 
within the caldera and appears at the top center of the image. The confluence of the Animas River with Mineral 
Creek lies just below the town, and the river cuts through the center of the image. Sultan Mountain lies southwest of 
the confluence; Molas Lake, Little Molas Lake, and Andrews Lake are to the west of the river toward the middle of 
the image. As the river leaves the caldera just south of the town, it cuts through the sedimentary formations 
containing abundant limestones. The yellow outcrop of limestone in the lower left of the image is near the aptly-
named Lime Creek, which flows into the Animas and contributes to the buffering of acidic waters introduced 
upstream by Mineral Creek. Limestones are also evident in road cuts paralleling the river just east of Sultan 
Mountain. The propylitic alteration zones in the upper right-hand corner of the image, however, exhibit a patterning 
which is due to the varying calcite, epidote and chlorite concentrations in the altered host rock. Preliminary analyses  
using Tetracorder v3.4a8 (Dalton et al., 1998) classified much of this material as calcite. 
 
4.2 Discrimination of Calcite-Epidote-Chlorite Mixtures 
 
 The propylitically altered zone from Figure 4 is enlarged in Figure 5 to show more details of the 
differentiated mixtures. The key is the same as for Figure 4. The astute reader will notice that there are no chlorite- 
dominated mixtures in the key other than chlorite with muscovite. During processing, it was found that few AVIRIS 
pixels gave a good match to a chlorite-dominated mixture. Pixels were generally dominated by either epidote or 
calcite. Referring to the ternary diagram in Figure 2, it is seen that few field samples from the Animas River 
Watershed and Silverton Caldera were dominated by chlorite. Laboratory analyses showed that most of these also 
contained sericite. The Tetracorder analysis found essentially the same thing: although there are some regions where 
chlorite does dominate the spectral signature, most areas lacking in epidote and calcite contained sericite as well. A 
more detailed discussion follows in section 4.3. The categories of mixtures CEC-B and CEC-C were found to be 
superfluous as well; along with CEC-F, the mixtures containing 80% of any one endmember gave similar 
correlations to the pure endmembers and were therefore not considered in the final analyses. As chlorite and 



muscovite had already been encountered together in a different location (Swayze 1997), a chlorite-muscovite mixture 
was already in the USGS Tetracorder (v3.4a8) reference library (Dalton, 1998). 
 
Four primarily northwest-southeast trending zones of exposed propylitic alteration are visible in Figure 5. The ridge 
of Hazelton Mountain in the upper right corner is highlighted in a profusion of light and dark blue, yellow-green and 

Muscovite with Chlorite, 
Epidote, and/or Calcite

Muscovite (Sericite)

Chlorite with Muscovite

Chlorite

Calcite

Epidote

Calcite with Epidote

Epidote with Calcite

Epidote with Calcite 
and Chlorite

Epidote with Chlorite

Calcite with Epidote 
and Chlorite

1 km

N

 
Figure 4. Georeferenced image of a portion of the Animas River Watershed study area. Tetracorder results 
are shown in color. The town of Silverton, Colorado is near the top center; the Animas River bisects the image 
vertically. This image has been engineering-corrected for roll, pitch, yaw, forward velocity, and smile, as well 
as orthorectified against a digital elevation model to remove topographic distortions. 



yellow, evidence of mixtures of epidote and calcite. Although few pixels exactly matched the equal- parts mixture 
(CEC-N, 33% each), the dark green and light blue pixels illustrate areas containing all three minerals. An outcrop of 
predominantly chlorite (red) in the lower left corner lies 
on Kendall Mountain. The intermediate slopes contain a 
combination of all of these, along with orange pixels 
denoting the presence of all four minerals. In these 
orange pixels, no single mineral dominates the spectrum 
strongly enough to be realistically selected as the 
primary mineral. Within the limits of current technology, 
such pixels cannot yet be further constrained. An 
additional source of uncertainty arises from the presence 
of sericite around the edges of the zone. Regions 
identified as pure sericite (muscovite) are shown in 
purple while the chlorite-sericite mixture is shown in 
pink. These give some idea of how the sericite grades 
into the rest of the propylitic assemblages. Fortunately, 
there appears to be a steady and gradual shift from 
calcite-dominated to sericite-dominated spectra. Were 
the sericite randomly distributed throughout the zones, 
this would be cause for concern. 
 
 The heterogeneous mix of pixels dominated by 
calcite, epidote and chlorite are indicative of the actual 
variations of concentration in the host rock. These 
variations result from the initial composition of the rock, 
variations in severity of propylitic alteration, and 
subsequent weathering. Although these specific slopes 
were not field-checked, earlier traverses of similar 
propylitic alteration zones in the watershed revealed 
exactly this pattern. The stronger spectral signal of 
epidote probably results in a slight overestimation of its 
abundance in these images. Likewise, the weaker signal 
of chlorite has probably caused its distribution to be 
slightly underestimated. However, these images 
represent a significant improvement over previous 
methods in deducing the distribution of calcite in the 
watershed, and will result in improved determination of 
stream buffering capacity from naturally occurring 
deposits. 
 
4.3. The Muscovite Problem 
 
 Care should be applied when interpreting these results. As noted earlier, all chlorites in this region were 
well-represented by ripidolite. This is likely not the case at all sites outside of this study area. In addition, it must be 
stressed that the presence of sericite in propylitic alteration zones was not taken fully into account in this study. 
Because muscovites have a strong diagnostic absorption feature at 2.2 µm, and weaker absorptions at 2.35 and 2.45 
µm, they interfere spectrally with the absorptions of calcite, epidote and chlorite. In the present study, this results in 
uncertainty in the absolute abundances of the minerals of interest. For locations evidencing the muscovite bands, 
relative concentrations of the three could not be established, and the Tetracorder algorithm was instructed to 
differentiate these into three categories. The easiest of course was muscovite only (purple in the key to Figure 4). 
Where the chlorite signature was seen together with muscovite, pixels were categorized as chlorite with muscovite 
(pink.) It is interesting to note that there was no apparent evidence for sericite alone with either calcite or epidote. In 
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Figure 5. Enlargement of a portion of Figure 4 
showing calcite, epidote, chlorite and muscovite 
mixtures in the Silverton Caldera. Woodchuck Basin 
lies right of center, between the ridges of Mount 
Hazelton (top right) and Mount Kendall (bottom 
center). Key is the same as in Figure 4. 



the case of mixed pixels of epidote, calcite and/or chlorite, together with the muscovite signature at 2.2 µm, nothing 
further could be determined about the composition and these are the orange pixels in Figures 4 and 5. 
 
 A ready solution to this problem could be to conduct a similar study to this one, using laboratory mixtures of 
four endmembers instead of three. Due to financial and timing constraints, this was not possible within the current 
study. In planning for such work, the obvious question of whether a fifth, sixth and seventh such endmember could 
crop up was investigated. Examination of the AVIRIS spectra, laboratory spectra, field samples and laboratory 
mixtures indicates that there are no other spectrally active materials in the study area in this region of the spectrum 
which do not have other diagnostic features already being used by the Tetracorder system. Once appropriate mixtures 
of muscovites have been added to the reference library, the algorithm should be able to distinguish the remaining 
four-endmember  (orange) pixels and further constrain the abundance of calcite and chlorite in the watershed. 
 
5. Conclusion 
 
 The application of the USGS Tetracorder algorithm to the Animas River Watershed study demonstrates the 
ability of rule-based expert systems to differentiate between spectrally similar materials using comparisons of least-
squares correlation coefficients derived from a reference library to those of the observed spectral data set. Including a 
set of spectra representing mixtures of the discrete endmembers calcite, epidote and chlorite was an essentially 
simple adjustment which enabled accurate discrimination between mineral mixtures in the host rock. The approach 
could be refined by the addition of muscovite-calcite-epidote-chlorite mixtures to the reference library. Researchers 
applying these results to other regions should first ensure that ripidolite is representative of the chlorites in their 
region of interest, or else adapt their reference library with local chlorites. This approach should prove useful in 
identifying other spectrally similar materials. These results will be useful to land managers wishing to constrain 
problems of acidic drainage in the Animas River Watershed, as well as to remote-sensing scientists with similar 
applications. 
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